
Dose Response Relationship: Determination of the ED₅₀ and LD₅₀

Dose Response Relationship

Subject name: pharmacology

Subject year:2024

Lecturer name: Dhuha waleed salih

Academic Email:

dhuha.salih23@tu.edu.iq

Font type (times new roman)

Pharmacological (Therapeutic Effect)

Toxicological (Lethal Effect)

Types of Response

1. Graded Response

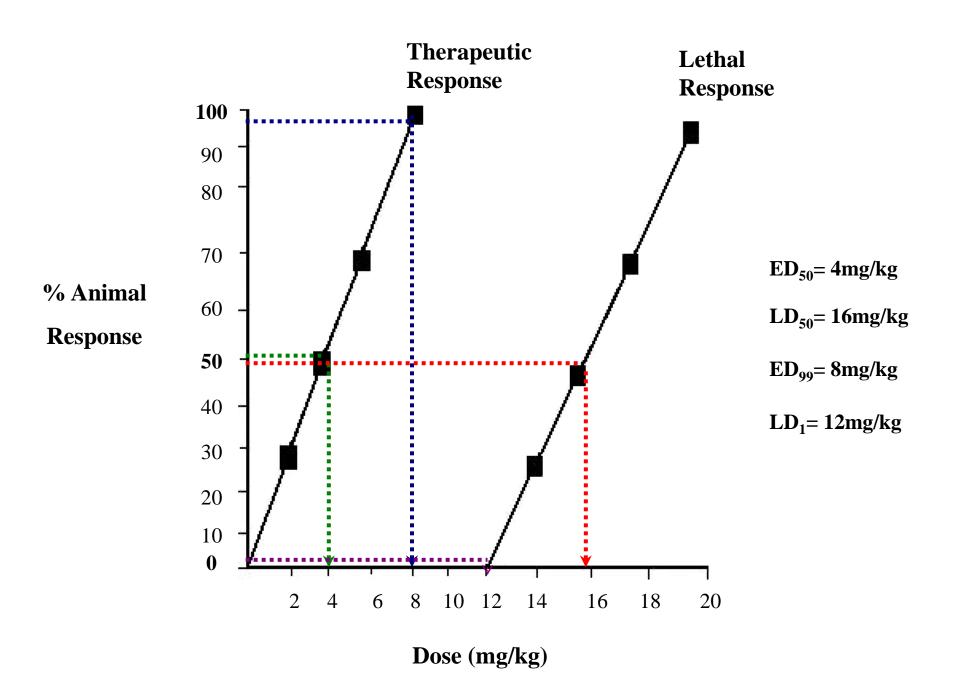
Duration of Sedation which depend on plasma concentration of the drug e.g: **Diazepam**5mg → 10 min.
10mg → 20 min.

2. Quantal Response

All or none response
Yes or No response
+ve or −ve response
e.g: **Ketamine**1mg ____ No Anesthesia
5mg ___ Anesthesia

Quantal Response:

*Median Effective Dose (ED_{50}): The dose of the drug that produce therapeutic response in 50 % of the animals.


*Median Lethal Dose (LD_{50}): The dose of the drug that produce Lethal response in 50 % of the animals.

Advantages of ED_{50} and LD_{50} :

- 1. Used in calculation of the drug safety.
- 2. Used as first step in researches for unknown drug.

Disadvantages of ED_{50} and LD_{50} :

- 1. Time consuming.
- 2. Using of large numbers of animals to calculate it.

Drug Safety

1. Therapeutic Index (T.I.)

2. Certain
Safety
Factor
(C.S.F.)

3. Standard
Safety
Margin
(S.S.M.)

1. Therapeutic Index (T.I.) =

$$LD_{50} / ED_{50} = 16 \text{ mg} / 4 \text{ mg} =$$

Multiplication of the **Effective Dose** 4 times to kill 50% of the animals

Note:

The higher T.I. → Safer drug e.g.:

Drug A (T.I.)= 5

Drug B (T.I.)= 10

Drug B is more **SAFER** than drug A

2. Certain Safety Factor (C.S.F.) = $LD_1 / ED_{99} = 12 \text{ mg} / 8 \text{ mg} =$

1.5

Multiplication of the **Effective Dose** 1.5 times to kill 1% of the animals

Note:

The higher C.S.F. — Safer drug e.g.:

Drug A (C.S.F.)= 2.5

Drug B (C.S.F.)= 0.5

Drug A is more **SAFER** than drug B

3. Standard Safety Margin (S.S.M.) =

 $(LD_1 / ED_{99} - 1) \times 100 =$

 $(12 \text{ mg} / 8 \text{ mg} - 1) \times 100 =$

<u>50 %</u>

Multiplication of the **Effective Dose** 50% to kill 1% of the animals

Note:

The higher S.S.M. → Safer drug e.g.:

Drug A (S.S.M.)= 100 %

Drug B (S.S.M.)= 30 %

Drug A is more **SAFER** than drug B

Question

Drug A:

 $LD_1 = 3 \text{ mg/kg}$

 $ED_{99} = 1 \text{ mg/kg}$

Drug B:

 $LD_1 = 160 \text{ mg/kg}$

 $ED_{99} = 100 \text{ mg/kg}$

Calculate S.S.M.? Which Drug is more **Toxic** than other?

Drug A

Dose Mg/kg	No. used	No. anesthetized	% anesthesia	No. died	% death
1	10	2	20	0	0
2	10	6	60	0	0
3	10	8	80	0	0
4	10	10	100	0	0
5	10	0	0	0	0
6	10	0	0	1	10
7	10	0	0	2	20
8	10	0	0	4	40
9	10	0	0	8	80
10	10	0	0	10	100

Drug B

Dose Mg/kg	No. used	No. anesthetized	% anesthesia	No. died	% death
10	10	0	0	0	0
20	10	2	20	0	0
40	10	4	40	0	0
80	10	6	60	0	0
120	10	10	100	0	0
140	10	0	0	2	20
160	10	0	0	4	40
180	10	0	0	6	60
200	10	0	0	8	80
220	10	0	0	10	100

1. Find: ED₅₀, LD₅₀, ED₉₉ and LD₁? 2. Calculate: T.I., C.S.F. and S.S.M.? 3. Which drug is SAFER, A or B?