CALCULATION of DRUG DOSAGES

Stage 1: Using the formula below, calculate the total required dosage based on given the body weight.

Weight (kg) x Dosage Ordered (per kg) = Y (Required Dosage)

Amount DESIRED (D)

Amount on HAND (H)

X QUANTITY (Q) = Y (Tablets Required)

CALCULATION of DRUG DOSAGES

- Example 2: 1200 mg of Klor-Con is ordered. This medication is only available as 600
- mg per tablet. How many tablets should the nurse give?

Step 1: Determine your givens.	Amount desired (D) = 1200 mg
	Amount on hand (H) = 600 mg
	Quantity = 1
Step 2: Plug in what you know into the formula and simplify.	$\frac{1200 \text{ mg}}{600 \text{ mg}} \times 1 = 2 \text{ tablets}$

CALCULATION of DRUG DOSAGES

- Example : Dilantin-125 is available as 125 mg/5 mL.
 Dilantin-125, 0.3 g PO, is
- ordered. How much should be administer to the patient?

Step 1: Determine your givens.	Amount desired (D) = 0.3 g
	Amount on hand (H) = 125 mg
	Quantity = 5 mL
Step 2: Convert 0.3 g to mg (since the ordered dose is in grams but the drug is available on hand in milligrams).	0.3 g x 1,000 mg/g = 300 mg
Step 3: Plug in what you know into the formula and simplify.	300 mg 125 mg x 5mL = 12 mL

Calculation of Intravenous Drip Rates

- In these types of calculations, for a given volume, time period, and drop factor (gtts/mL), the required IV flow rate in drops per minute (gtts/min) is calculated.
- Note: Since a fraction of a drop is not possible to give to a patient, it is usual to round the answers to the nearest whole number.

Calculation of Intravenous Drip Rates

```
Volume (mL)
Time (min) x Drop Factor (gtts/mL) = Y (Flow Rate in gtts/min)
```

Example 1: Calculate the IV flow rate for 250 mL of 0.5% dextrose to be administered over 180 minutes. The infusion set has drop factor of 30 gtts/mL.

	Drop factor: 30 gtts/mL
Step 2: Use the formula to calculate the IV flow rate. No unit conversions are required. Remember to round the final	$\frac{Volume (mL)}{Time (min)} \times Drop Factor \left(\frac{gtts}{mL}\right) = Y (gtts/min)$
answer to the nearest whole number.	$\frac{250 \text{ mL}}{180 \text{ min}} \times 30 \left(\frac{\text{gtts}}{\text{mL}}\right) = 41.66 \text{ gtts/min}$

Calculation of Intravenous Drip Rates

- Example 2: The infusion set is adjusted for a drop factor of 15 gtts/mL. Calculate the IV
- flow rate if 1500 mL IV saline is ordered to be infused over 12 hours.

Step 1: Determine your givens.	Volume: 1500 mL
	Time: 12 hours
	Drop factor: 15 gtts/mL
Step 2: Convert 8 hours into minutes.	12 h x 60 min/h = 720 min
Step 3: Use the formula to calculate the IV flow rate (gtts/min).	$\frac{Volume (mL)}{Time (min)} \times Drop Factor \left(\frac{gtts}{mL}\right) = Y (gtts/min)$
	$\frac{1500 \text{ mL}}{720 \text{ min}} \times 15 \left(\frac{\text{gtts}}{\text{mL}}\right) = 31.25 \text{ gtts/min}$

Therefore, the IV flow rate is 31 gtts/min.

Anesthetic dosage

• Anesthetic dosage = $\frac{Scientific \ dose \times weight}{concentration \times 10}$

• percentage =
$$\frac{part \, Value}{All \, value} \times 100$$